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ABSTRACT  In many practical applications, the coating of solids is obtained by spraying complex liquids such as surfactant 

or/and polymer solutions on the surface. Upon collision with the solid, the droplets become highly deformed in the shape of a 

more or less flat wetting film in a few milliseconds, and then, they relax towards equilibrium. This very strong and short 

deformation causes the droplets to so much depart from equilibrium that the transient values of the physical properties of the 

liquid itself can be drastically different from the equilibrium ones. In the case of polymer solutions, elastic stresses arise from 

the elongation of the polymer chains, and in the case of surfactant solutions, there is no longer equilibrium between the 

adsorbed surfactants at the surface and those in the film core. The consequences are severe for the quality of the coating which 

is damaged by the excessive occurrence of splashes, of detaching satellite droplets, or of thickness irregularities. To analyze 

these effects, we have realized impacts of drops on disk-like targets of same size as the diameter of the impacting drop. Upon 

collision with these small targets, the drop is transformed into a thin lamella with free surfaces bounded by a thicker toroidal 

rim giving rise to splashes in a way which depends on the nature of the additives and their concentration in solution The high 

and fast deformation of the drop liquid with the above mentioned transient change of the physical properties similarly occurs 

on a small target that it does on a large plate, but the viscous interaction of the liquid with the solid surface is now suppressed. 

The physical situation is therefore simpler in the former, which enabled us to calculate the drop dynamics and to carefully 

analyze the influence of the dynamic physical properties of the surface-active solutions in a pure view. A major practical 

conclusion of our studies is that under very similar impact conditions, surfactants can either stabilize the lamella or destabilize 

it depending on their nature and their concentration in solution. 
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1. INTRODUCTION 
 

Most liquids in spraying processes are surfactant or 

polymeric solutions at different degrees. To know how 

drops from these liquids behave in impact processes is of 

utmost importance for aerosol coating, inkjet printing, 

agricultural spray and for any technologies where liquid 

droplets are impacting a substrate.  

The collision of a drop with a plane unbounded solid 

substrate results in a very fast liquid lamella growth and a 

subsequent relatively slow retraction. In the case of a drop 

of a surface-active solution impacting a planar solid 

substrate of low surface energy [1-2], it was observed that 

surfactant additives do not influence the growth-stage, 

whereas they can very significantly slow the lamella 

retraction [3]. During the stage, the liquid in the drop 

experiences a high rate of bulk and surface deformations, 

and the subsequent drop retraction is driven by the 

‘response’ of the liquid to these extreme circumstances. 

Generally speaking, a 'fresh' surface is formed very fast in 

comparison with the kinetics of surface adsorption of the 

surfactant; therefore the process is controlled by a dynamic 

surface tension effect. Then, the retraction stage is 

influenced by the ability of the surfactants to restore the 

equilibrium surface concentration decreasing the dynamic 

surface tension towards its equilibrium value.  

The purpose of the present work is the understanding of 

the surfactant-related mechanisms that drive the lamella 

dynamics as well as its disintegration. To achieve this task, 

we have used a small target instead of a large plate. The 

reason for this particular experimental configuration is to 

remove the viscous friction caused by the drag exerted by 

the solid plate on the drop liquid, and to analyze the role of 

the surfactants in the impact process in a pure view.  

 

2. EXPERIMENTAL 
 

2.1 Materials 

The tested liquids were aqueous solutions of dioctyl 

sulfosuccinate sodium salt (DOS) and of trisiloxane 

oxypropylene polyoxyethylene (Silwett L77). DOS was 

supplied by Acros Organics and Silwett L77 by Crompton 

Europe S.A. Milli-Q distilled water at room temperature 

was used as solvent in all cases. DOS molecules have two 

long chains and as their concentrations increase in solution, 

they organize as vesicles [4], while Silwett L77 molecules 

which have a very large polar head with only one chain 

form more or less spherical micelles at low concentration 

and then lamellar aggregates of different kinds as the 

concentration increases [5].  

The main difference between DOS and Silwett L77 in 

solution at same concentration (in cac unit) is the 

following: DOS is a 'fast' surfactant, which means that the 

solution surface tension relaxes relatively rapidly to its 

equilibrium value if a 'fresh' surface is formed. On the 

contrary, Silwett L77 is a very effective, however a 'slow' 

surfactant, its surface tension relaxing relatively slowly 

toward equilibrium. Figure 1 illustrates these properties. 
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Fig. 1: Dynamic surface tension of DOS and Silwett versus the inverse of 

the surface dilational rate measured with the Maximum Bubble Pressure 

Method. 

 

 

2.2 Experimental procedure 

Drops were slowly generated at the tip of a capillary 

connected to a syringe pump in 30 – 60 seconds. This time 

is large enough to ensure equilibrium between the 

surface-active molecules in the bulk and at the surface. 

Drops detached from the capillary under the action of 

gravity, fell from a height equal to 65cm, and reached the 

target at velocities vi of order of 3.4 m/s. The drop 

diameters di were in the range of 2.5 - 2.8 mm.  
 

 

 
Top view image 
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Fig. 2: Set-up and high speed visualization technique. Black circle in 

center of the top view image is a disk-like target of diameter 3.9 mm. Side 

video camera gave superimposition of two drop images before impact and 

one in the process impact.   
 

Under typical conditions, di=2.7 mm, µ=1mPa⋅s, and 
γ=γw=72mN/m (γw is the water surface tension). The time 

scale of the process is t∗=di/vi=0.794 ms, the impact 

Reynolds number (Re=ρvidi/µ) is 9180, and the impact 

Weber number (We=ρvi2di/γ) is 433. 
The carefully polished planar end surface of a stainless 

steel cylinder (∅ = 3.90±0.05 mm) with a slightly blunt 

edge (≈ 0.1 mm) was used as a target. The cylinder axis was 

aligned with the drop trajectory. Before each impact, the 

target surface was processed by a jet of compressed 

nitrogen to remove the liquid remained there from previous 

impacts. 

We used a video recording of top views of the drop 

impact by means of a high speed camera equipped with a 

strobe lightening. The grabbing frequency was 1000 frames 

per second and the exposure time 1 µs. Output frames had a 

resolution of 1024×512 pixels with 256 grey levels.  

 

3. RESULTS 
 

A few examples of top view observations of impacts of 

surfactant solutions drops are presented in figures 3-4. 

Images of water drops are also given for reference. The 

solutions concentrations were 1×cac in figure 3, and 

10×cac in figure 4. For all the solutions, the drops form a 

thin liquid lamella with a relatively thick toroidal rim like 

the water ones [6].  
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Fig. 3: Sequences of video frames depicting the collision of drops of water 

and of surfactant solutions at C=1×cac with a disk-like target at impact 

velocity of about 3.4 m/s. 
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Fig. 4: Same caption as in Fig. 3 with C=10×cac  

 

 



 

Results show that the surface-active additives can 

modify the impact of water drops on a small target at least 

in three ways. 

(1) The first observable modification is a more intensive 

finger formation and a slight increase of the stability of the 

liquid fingers in comparison with the case of pure water. 

The most stable fingers are obtained with DOS drops. 

Secondary jets ejected from the rim look longer than in the 

case of pure water, they do not quickly disintegrate, but 

they transform into liquid filaments, forming a spider-like 

structure, like for polymer solutions [7]. However, in the 

case of surfactants the reason for this aspect is different 

from the one for polymers. The increase of the filament 

lifetime is not here related to inner elastic stresses in the 

filament as it occurred with polymer solutions, but it is 

caused by the decrease of the surface tension, a high value 

of the surface tension favouring filament disintegration.  

The second modification is connected with the influence 

of the surfactants on the lamella spread factor. Figure 5 

shows that for DOS solution at C=1×cac, and for Silwett 

L77 solutions at C=1 and 10×cac, the spread factor β=β(τ) 
satisfactorily coincides with the one for pure water. In 

particular the maximum spread factors, βm
w for water and 

βm
 for these solutions can be estimated as βm

w~βm~5.0. It 

means that the impacts are controlled by the dynamic 

surface tension, which is practically equal to the water 

surface tension for these solutions. Besides, figure 5 shows 

that the spread factor of the DOS solution at C=10×cac 
significantly exceeds the water spread factor as τ >2, its 
maximum size being βm~6.0. Besides, the lifetime of the 

lamella becomes noticeably larger than the one of water 

under same impact conditions.  

 

 

  
Fig. 5: Dimensionless diameter of the lamella β =d/di for tested solutions, 

C=1×cac (circles) and 10×cac (diamonds), as a function of dimensionless 

time τ =t/(di/vi)  
 

 

The third modification of the lamella caused by the 

presence of surfactants was rather unexpected: holes 

spontaneously nucleated in the internal part of the lamellas 

of Silwett L77 solutions at t~3 ms for the dilute solution 

and at t~2 ms at 10×cac.  
 

 

4. DISCUSSION 
 

To analyse the effects of the surface tension changes on 

the lamella flow, we have modelled the lamella formation 

as resulting from a steady cylindrical liquid source (figure 

6), of diameter ds, supplying an axisymmetric free liquid 

film with initial flow rate qs, velocity vs, thickness hs, liquid 

surface tension γs, and surface concentration of surfactant Γs 

at the point of ejection r=rs≡ds/2 like in [8]. The ejection 

parameters are vs≈vi, ds≈di, and γs≈γi.  
The lamella behavior results from the continuous 

competition between the inertial forces that drive the drop 

liquid outwards (figure 6) whereas the unbalanced capillary 

forces acting on the lamella surfaces pull back the liquid in 

a thickening rim at constant velocity relatively to the film 

(figure 7) 

 

 vr= (2 γ /ρh )1/2 , (1) 

 

where γ is the liquid surface tension, ρ the liquid density 
and h the film thickness. The maximum extension of the 

lamella, rm, is obtained when the velocity, v, of the free 

liquid film and the one of the rim velocity are equal, that is 

when the local Weber number, We=ρv2h/2γ , is equal to 1. 
With a water drop, it was shown in [8] that rm = ρqsvs/4πγw 
and that the thickness of the lamella close to the rim 

hm
w=qs/(2πrmwvs) . 

 

  
 

Fig. 6: Modelling of the lamella as 

a liquid sheet arising from radial 

ejection of liquid from a 

cylindrical source 

Fig. 7: Liquid rim of a motionless 

liquid sheet moving with velocity 

vr=(2γ/ρh)1/2 

 

 

4.1. Equation of motion 

Assuming that the film thickness h is small enough, in 

comparison to all other length scales, to use the 

approximation of flat velocity profile in the film, the 

kinematic and dynamic variables in the lamella are only 

function of the radial coordinate r: v=v(r), h=h(r). 

The liquid surface tension, γ=γ(r), changes under the 
influence of two factors. The first one is related to the 

residual surfactants initially adsorbed at the drop surface 



 

before impact, whose concentration drops due to the high 

rate of deformation experienced by the drop surface, 

increasing the local surface tension in different parts of the 

lamella. The second factor is the surfactant flux from the 

bulk lamella to the surface, which tends to restore the 

equilibrium surfactant adsorption (figure 8).  

The equation of motion follows from the momentum 

balance for a motionless control volume in the lamella:  

 
( )2

2

d rρ h
dγ

= r
dr dr

v

 (2) 

Introducing in (2) the continuity equation  

 

 qs=2πrhv, (3) 

we obtain: 

 
dγdv 4πr

=
dr ρq drs

. (4) 

Equation (4) represents the balance between the lamella 

inertia and the so-called Marangoni stresses. It shows that, 

in a lamella with constant surface tension, the liquid 

velocity does not change [6,7]. If the surface tension γ 
decreases as r increases, then the liquid velocity v also 

decreases, and vice versa.  

 

4.2. Surfactant transfer kinetics 

Surfactant mass balance is described as  

 
( )d Γvr1

= J

r dr

, (5) 

where Γ is the surface concentration of the free surfactant 
molecules (monomers). The left term in (5) describes the 

surfactant transfer due to the deformation of the surface, 

and the right one describes the flux of surfactant, J, from 

the bulk to the surface [9]. 

Assuming that the surfactant transfer is purely diffusive, 

the flux J is given by [10].  

 
c c

J = D D

n δn=0

∂

∂
∼ , (6) 

where D is the diffusion coefficient, c, the bulk 

concentration of the free surfactant molecules (monomers), 

n, the normal to the surface, δ, the thickness of the diffusion 
boundary layer. The estimate (6) is based on the statement 

that due to the high rate of surface dilation, the surface 

concentration Γ and the subsurface bulk concentration csub 
are small in comparison with the saturation surface 

concentration Γ∞ and the bulk concentration c, accordingly 

[1-3, 11].  

 

 

Fig. 8: Transfer of surfactant molecules from disintegrated aggregates to 

the almost pure surface. 

 

The magnitudes of δ and c in (6) depend on the 
surfactant total concentration C. For dilute solutions, with 

c=C ≤ 1×cac, the thickness δ grows with r because of 

surfactant depletion in the solution in the vicinity of the 

surface induced by the consumption of surfactants by the 

dilating surface. In this case, δ scales as rPe-1/2, where 

Pe=vr/D is the local Péclet number [12].  

For concentrated solutions with C>>1×cac, the dilution 

of the solution near the surface is compensated by the 

disintegration of aggregates, where most surfactant 

molecules are concentrated. In this case, the limiting step to 

surfactant transport is the direct diffusive transfer of 

surfactant molecules from the disintegrating aggregates to 

the almost pure surface through a layer of constant 

thickness, δ, which is of the order of the mean distance 

between two neighbour aggregates (figure 8). Since the 

concentration of free surfactant molecules in the 

neighbourhood of the aggregates is equal to 1×cac, the 
difference between c and csub is also of the order of 1×cac. 
The flux J can, therefore, be estimated as J=D×cac/δ, 
where δ is now equal to the mean distance between two 

neighbour aggregates.  

The leading role of the aggregates disintegration in 

concentrated solutions is confirmed by the increase of the 

lamella size for DOS at 10×cac which is not as large as at 

1×cac (figures 4,5) while the bulk concentrations of free 

surfactant monomers, c=1×cac, are the same in both 

solutions.  

Below, we only consider a theoretical model for highly 

concentrated solutions in which surfactant effects are more 

significant. In this case, δ=const and the combination 

D×cac/δ is everywhere constant. A model for dilute 

solutions could be similarly considered assuming that 

δ~rPe-1/2.  
 

4.3. Constitutive equations 

Integrating equation (5) with J=D×cac/δ and using the 
boundary conditions r=rs, v=vs, Γ=Γs, we obtain the 

surfactant distribution in the lamella surface:  

 ( ) ( )2 2

s s s s
D× cac

Γ r vr = Γ v r + r - r

2δ

 (7) 

Locally, the surface concentration Γ is related to γ by 
the asymptotic form of the Langmuir-Frumkin equation of 

state  

 

 γ(r)-γw=-RTΓ(r), with Γ/Γ∞<<1 (8) 

 

where R is the gas constant and T the temperature.  

Introducing (8) in (7), we obtain the dependence of γ 
with r as 

 ( ) ( ) ( )2 2v r D× cac RTs s
γ r = γ - γ - γ - r - rw w s s

vr 2δ vr

 (9) 

where v=v(r) is the velocity distribution in the lamella.  

In this work, we are mainly interested by the influence of 

the surfactants and dynamic surface tension effect on the 

maximum size of the lamella. To simplify the physical 

problem, we assume that due to the fast deformation of the 



 

lamella surface the local surface tension γ  is far from 

equilibrium 1-γ/γw<<1, and that J is the main restoring flux, 

neglecting by residual surfactant. Due to the last 

approximation we can suppose for simplicity rs=0.  

By substituting (9) into (4) with γs=γw, we obtain the 

equation of the sheet motion in dimensionless form as  

 
dV FXFX

dX VV

 
 − = − 
 

2

2
1  (10) 

where X=r/rm
w, V=v/vs, rm

w≡ρqsvs/4πγw is the maximum 

radius of steady water lamella [8] and 
w
m

w s

rD×cac
F = RT

δ 2γ v

. 

The boundary condition is  

 V=1 at X=0.  (11) 

The analytical solution of (10) is obtained as  

 
2

2V
X = - lnV

F

. (12) 

The dimensionless form of the distribution of surface 

tension Σ≡γ/γw in the lamella is  

 
FX

V
= −1Σ . (13) 

The distribution of the local Weber number in the 

lamella We≡ρhv2/2γ=V/ΣX is determined if both V=V(X) 

and Σ=Σ(X) are known. The condition We=1 that defines the 

position Xm of the free rim of the steady lamella follows 

from (1). It writes: 

 
m

m m

V
We

XΣ
= =1 (14) 

where index “m” indicates the values near the free rim. 

  

4.4. Effect of the surfactant flux 

The solution V(X) of (12), and the surface tension 

distributions (13) are plotted in figures 9 and 10 for 

different values of the parameter F which measures the 

effect of the surfactant flux from the bulk to the surface. 

Only parts of the curves up to the points of return satisfy 

the boundary conditions, and therefore only these parts are 

appropriate from a physical point of view. They are drawn 

in black. These plots show that due to the surfactant flux, 

the surface tension gradient is negative, which causes a 

deceleration of the flow in the lamella. This effect increases 

as F increases.  

The common feature to all curves is that a steady flow 

exists only up to a certain critical point X∗(F) beyond which 

it becomes impossible. At the critical point, dV/dX 

=dΣ/dX=-∞. Introducing dX/dV=0 in (12), we obtain the 

values of the critical velocity V∗ and of X∗ as 

V∗=exp(-1/2)=0.60653 and X∗=0.60653/F
1/2: V∗ does not 

depend on F, whereas X∗ decreases as F increases. The 

finite values of the velocity and of the thickness at the 

critical point mean that the flow continues beyond the 

critical point X∗, but it becomes unsteady or/and it loses its 

spatial uniformity): v=v(r,t,χ), h=h(r,t,χ), where χ is 

additional coordinate - the polar angle in cylindrical 

coordinate system. In other words, X* is the F-dependent 

position of the boundary between steady uniform and 

unsteady (or/and non-uniform) flow in the lamella. We do 

not know now which kind of flow is formed at X>X∗: 

regular oscillations, regular spatial waves, chaotic 

instability, turbulence or anything else? It is only obvious 

that this temporal or/and spatial instability can have a great 

influence on the lamella dynamics.  

 
Fig. 9: Effect of surfactant flux on the radial distribution of velocity V for 

different values of F (indicated on the corresponding curves). The 

horizontal dotted line represents the critical level V∗= 0.60653. Symbols 

(+) show the positions of the liquid rim for different values of F.  

 
Fig. 10: Effect of surfactant flux on the radial distribution of the surface 

tension Σ for different values of F (indicated on the corresponding curves). 

 

The maximum size of a steady free lamella Xm is 

defined by equation (14), which has the solution  

 
( )21 1 4

8
m

F
V exp

F

− −
= −

 
 
 
 
 

 (15) 

with Xm = Xm (Vm) defined by relation (12).  

The values of Xm and Vm are shown in figure 9 by 

means of crosses on the corresponding curves. Figure 9 

shows that the free lamella rim is located in the steady 

domain Xm<X* if F<0.25. Obviously, in this case the 

surfactant flux J enlarges the maximum size of the lamella 

in this domain since Xm>1 (figure 9). At F=0.25, Xm reaches 

a maximum (Xm)max=1.213 and Vm a minimum 

(Vm)min=V∗=exp(-1/2)=0.60653; simultaneously, X* is equal 

to (Xm)max, which means that the lamella rim becomes the 



 

boundary of the steady uniform flow if F=0.25. 

It is possible to show that We decreases in the lamella 

with radial coordinate X, but We cannot reach 1 if F>0.25 

because equation (15) has no solution in this case. It means 

that We>1 everywhere in the domain defined by X<X* and 

therefore a steady free rim (defined by We=1) cannot be 

located in the domain of steady uniform flow. What will be 

with free lamella rim at F>0.25 is not obvious for us, and 

the mechanism of the rim formation is unclear in this 

situation.  

Comparing the theoretical results for Xm with our 

experimental data, one may conclude that the observed 

increase of the lamella size in the case of DOS, 10×cac up 
to βm=6.0 (i.e. Xm= βm/βm

w=6.0/5.0=1.20) corresponds to a 

value of F≈0.25 for which the theory predicts a lamella size 

Xm=1.213. Note that, as figure 9 shows, the increase of the 

lamella size up to Xm=1.213 is the maximum possible for 

steady uniform lamella flow.  

The theory predicts no surfactant effect on the lamella 

size if F<<0.25 (figure 9). Thus a low value of parameter F 

(F<<0.25) can be attributed for Silwett L77 solutions which 

form lamellas of same size as the water ones.  

 

4.5. Quantification of the effects of the dynamic surface 

tension 

The constitutive parameter F=RT(D×cac/δ) rmw/(2γwvs) 
can be independently estimated analysing data in figure 5 

on the dynamic surface tensions measured with a Maximum 

Bubble Pressure method apparatus. With this method the 

mechanism of formation of the 'dynamic surface tension' is 

the same as in our experiment and results from the 

competition between the flux of surfactant from the bulk to 

the surface and the decrease of surface concentration of 

surfactant due to the surface fast dilation. Considering the 

flow at high rate of surface dilation, we can estimate the 

balance of surfactants at a deforming surface element S as  

 
( ) cac cd S sub

~ SD

dt

−Γ

δ
 (16) 

from which the estimation of the surface concentration 

follows  

 
subcac c

~ D
−

Γ
δα

 (17) 

where 
1 dS

S dt

≡α  is the surface expansion rate in the 

maximum bubble pressure method.  

 Using the Langmuir-Frumkin state equation 

γw-–γ =–RTΓ∞ln(1–Γ/Γ∞) and the Langmuir isotherm 

Γ∼Γ∞csub/k, valid for dilute adsorption (where k is a material 

constant), we obtain from (17) an approximate formula for 

the surface tension dependence on α 

 
( )

( )
11

1 2

RT D cac /
G lnw

G G

×
− = − −

+

 
 
 
 

δ
γ γ

α
, (18) 

where G1=RTΓ∞ and G2=kD/Γ∞δ. 
 Considering the asymptotical case γ→γw as α→ ∞, 

we obtain from (18) RT(D×cac/δ)=limα→∞[(γw–γ)α] ≡ 
[(γw–γ)α]∞. The parameter [(γw–γ)α]∞ characterises the 

surfactant adsorption rate on the surface. It can be found by 

best fitting the experimental points in figure 1 to formula 

(18). Results for the three liquids are presented by solid 

lines in figure 1 and also in table 1.  

 
Table 1. Parameters characterizing the adsorption kinetics of the 

surfactants.  

 

Solution 
[(γw-γ)α]∞  

(N/(m⋅s)) 
F 

r∗ at 

τ∈[0, 3] 

(mm) 

r∗ at 

τ~5 
(mm) 

DOS, 

1×cac 2.48 0.034 22.2 3.3 

DOS, 

10×cac 65.4 0.901 4.30 0.65  

Silwett L77 

10×cac 1.6 0.022 27.6 4.1  

 

We can now rewrite F as F=[(γw-γ)α]∞ rm
w/(2γwvs). All 

quantities defining F are measurable. To compare the 

theoretical and experimental maximum sizes of the lamella, 

we put vs∼vi=3.4 m/s, γw=0.072 N/m, and rm
w=βm

wdi/2 

=5.0×0.0027/2=0.00675 m. The parameters so estimated 

(table 1) correlate well with the experimental observations 

of the present work. The values of F, 0.034 for DOS at 

1×cac and 0.022 for Silwett L77 at 10×cac predict the 
absence of effect of the surfactant on the maximum lamella 

size (figures 3 and 4), as it was indeed observed in the 

experiments. Besides, estimated value F=0.901 for DOS, 

10×cac is in the same order of magnitude as F=0.25, which, 

according to figure 9, predicts the increase of the lamella 

size up to the level βm=6.0 as measured experimentally 

(figure 5). Therefore, the observed increase of the lamella 

size of DOS, 10×cac is caused by an adsorption kinetics of 
the surfactant molecules that is faster in this solution than in 

the other ones studied in this work.  

 

4.6. Hole nucleation  

Let us consider now the spontaneous hole nucleation in 

the light of our theoretical results. As a first approximation, 

we can assume the flow in the lamella as sequences of a 

number of steady flows. The first flow regime corresponds 

to the growth of the lamella up to its maximum size. The 

latest flow regime is characterised by a very weak liquid 

ejection, the existence of the lamella being made possible 

by the slowing down of the liquid rim retraction due to its 

high inertia. Massive rim plays the role of 'lamella holder'. 

Correspondingly, the first and the latest flow regimes are 

characterised by different values of F and as a consequence 

by different coordinates of the boundary of the steady 

uniform flow, r∗. 

In dimensional form, the critical coordinate 

X∗=0.60653/F
1/2 is written as  

 

( )

w

w s m

w

1 2

2
0 606

v r
r* .

∞

=
−

 
 
    

γ

γ γ α
. (19) 



 

At the initial stage of the lamella existence τ∈[0, 3] the 

flow velocity is estimated as v ∼ vi=3.4 m/s, and the 

equivalent water lamella radius rm
w=6.75 mm. In this case 

according to (19) the critical radius r∗ has the same order of 

magnitude or exceeds significantly the current maximum 

radius of the lamella rl~rm
w=6.75 mm – see table 1. It 

means that the flow in the lamella occurs in a domain where 

a steady uniform flow is possible, We>1 and it continues up 

to the rim, where We=1.  

At the latest stage of the lamella existence (τ∼5), 
another hydrodynamic situation exists. Using our 

experimental estimations of the kinematic data for the flow 

at τ∼5 in [6] (h∼25 µm, v∼1 m/s), the continuity equation 

(3), and the Taylor formula for the lamella maximum size 

[8] rm
w=ρqv/4πγw, we obtain rm

w∼0.5 mm. The 

corresponding values of r∗ calculated with formula (19) are 

presented in table 1. Relatively small values of r∗ are 

obtained whereas the lamella size rl at τ∼5 remains large 

rl~rm
w=6.75 mm (figure 5), which illustrates well the holder 

role of the rim. Therefore, we observe a large decrease of r∗ 

from the level r∗>rl at the early stage of the impact, down to 

the level r∗<rl at the latest one (figure 11). It means that a 

steady uniform flow cannot occur in the part of the lamella 

at τ∼5. We suppose that the transition of the flow to the 

unsteady or/and spatially non-uniform regime is the main 

reason of the hole formation. 

 

 
Fig. 11. Image of a lamella displaying the position r* of the limit 

between stable (r<r*) and unstable (r*<r<rl) domains.  

 

 

However the precise mechanism is still unclear. The 

unsteady or/and non-uniform character of the flow is not a 

sufficient condition for hole formation. Experiments with 

different liquids or even with different drops of a same 

liquid show that the lamella rupture has a random character. 

In reality, hole nucleations in the liquid film result from a 

thickness instability in a region beyond r* where We <1 and 

where Marangoni effects cannot restore the uniformity of 

the thickness.   

 

5. CONCLUSION 
Surfactant additives increase the size and the lifetime of 

the liquid lamella resulting from the impact of drop on a 

small target because of the fast decrease of the surface 

tension forces in the case of fast surfactants. They could 

hinder splashes that generate spider-like liquid structure at 

the end of the impact. Paradoxically, we could also observe 

spontaneous nucleation of expanding holes giving to the 

lamella a web-like structure. The observed holes formation 

is likely connected with the coexistence of stable and 

unstable domains in the lamella generated by surface 

tension gradients in the latest stage of the experiment. 

These results may be of great assistance for the choice of 

additives for the formulation of sprays.  
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